РОСЖЕЛДОР

Федеральное государственное бюджетное образовательное учреждение высшего образования Ростовский государственный университет путей сообщения (ФГБОУ ВО РГУПС)

Лискинский техникум железнодорожного транспорта имени И.В. Ковалёва (ЛТЖТ – филиал РГУПС)

ИНФОРМАТИКА

Методическая разработка урока по теме «Представление целых и вещественных чисел в компьютере. Выполнение арифметических операций над целыми числами. Арифметические операции над числами с плавающей точкой»

для специальностей

23.02.06 Техническая эксплуатация подвижного состава железных дорог 23.02.01 Организация перевозок и управление на транспорте (по видам)

УДК 51

Конспект лекции, презентация и задания по теме Представление целых и вещественных чисел в компьютере. Выполнение арифметических операций над целыми числами. Арифметические операции над числами с плавающей точкой для студентов 1 курса очного отделения специальностей 23.02.01 Организация перевозок и управления на транспорте (по видам) (железнодорожный транспорт), 23.02.06 Техническая эксплуатация подвижного состава железных дорог и используются при проведении практической работы

Автор

Лапыгина С.Н. – преподаватель ЛТЖТ – филиала РГУПС.

Рецензент

Сергеева Т.В. – заместитель директора по УР – филиала РГУПС

Рассмотрено на заседании цикловой комиссии математических и общих естественно-научных дисциплин, протокол от 31.08.2023 №1.

Рекомендовано методическим советом ЛТЖТ – филиала РГУПС, протокол от 01.09.2023 №1.

Аннотация

Методическая разработка содержит конспект лекций, презентацию и задания для самостоятельного выполнения по теме Представление целых и вещественных чисел в компьютере. Выполнение арифметических операций над целыми числами. Арифметические операции над числами с плавающей точкой. Рекомендуется для проведения занятия по разделу Арифметические и логические основы работы компьютера в курсе изучения дисциплины Информатика.

Содержание

План урока:	
Слайды презентации	
Практическая работа	
Список рекомендуемых источников	

План урока:

Цель урока: иметь представление о форматах чисел с фиксированной и плавающей запятой (точкой), знать понятия прямого кода, обратного кода, дополнительного кода, уметь записывать целые числа (положительные и отрицательные) в прямом, обратном и дополнительном коде, иметь представление о записи в ячейке числа с плавающей точкой.

Задачи урока:

- *образовательные*: закрепление знаний учащихся по теме «Представление целых чисел в компьютере».
- *развивающие*: совершенствование умственной и познавательной деятельности учащихся, развитие мышления учащихся.
- воспитательные: сознательное усвоение материала обучающимися.

Материалы и оборудование к уроку: презентация, видеоуроки, конспект урока, карточки с практической работой, тренировочный тест.

Тип урока: комбинированный урок объяснения нового материала и решения примеров.

Форма проведения урока: беседа, практическая работа по решению задач, парная, индивидуальная, фронтальная формы работы.

Продолжительность урока: 2 урока по 45 мин.

- 1. Организационный момент.
- 2. Фронтальный опрос по теме кодирование числовой информации:
 - а. Что такое система счисления?
 - b. Какие бывают системы счисления?
 - с. Что называют основанием системы счисления?
 - d. В каком виде находятся в памяти компьютера числовые значения?
 - е. Что нужно сделать чтобы увидеть двоичный код десятичного числа?
 - f. Расскажите алгоритм перевода числа из десятичной системы счисления в двоичную.
 - д. Для каких систем счисления справедлив этот алгоритм?
 - h. Какая система счисления называется позиционной?
 - і. Приведите пример непозиционной системы счисления.
- 3. Практическая работа с группой по прошлой теме: 6 человек работают с тестом, остальные выполняют расчетные задания в тетради:

Расположить в порядке возрастания числа

- 1. 1100₂
- $2. F_{16}$
- 3.45_{10}
- 4. 1101₂
- 5. 25₁₀
- 6. 1B₁₆

7. 218

8. 348

Otbet: 1100_2 , 1101_2 , F_{16} , 21_8 , 25_{10} , $1B_{16}$, 34_8 , 45_{10}

Выполните вычисления в двоичной системе счисления:

$$110111,1_2-101111,1_2+1110101_2=1111101_2$$

Выполните вычисления в восьмеричной системе счисления:

$$4567_8 + 7134_8 - 1775_8 = 11726_8$$

Выполните вычисления и запишите результат в десятичной системе счисления:

$$1001011,11_2+152,7_8-4D_{16}=259,5_{10}$$

Восстановите неизвестные цифры в примере на сложение в восьмеричной системе, которые обозначены знаком вопроса:

3?42

215?

?721

Ответ: 3542

2157

5721

4. Объяснение нового материала.

Для хранения чисел в памяти компьютера используется два формата: *целочисленный (естественная форма)* и *с плавающей точкой* (точка — разделительный знак для целой и дробной части числа).

Целочисленный формат (его ещё называют формат с фиксированной точкой) используется для представления в компьютере целых (англ. integer) положительных и отрицательных чисел. Для этого, как правило, выделяются 1, 2 или 4 байта.

В форме с фиксированной запятой числа изображаются в виде последовательности цифр с постоянным для всех чисел положением запятой (или точки), отделяющей целую часть от дробной.

Эта форма проста и привычна для большинства пользователей, но имеет небольшой диапазон представления чисел и поэтому не всегда пригодна при вычислениях. Если же в результате какой-либо арифметической операции получается число, выходящее за допустимый диапазон, то происходит переполнение разрядной сетки, и все дальнейшие вычисления теряют смысл.

Однобайтовое представление применяется только для положительных целых чисел. В этом формате отсутствует знаковый разряд. Наибольшее двоичное число, которое может быть записано при помощи 1 байта, равно 11111111, что в десятичной системе счисления соответствует числу 255.

Для положительных и отрицательных целых чисел обычно используется 2 и 4 байта, при этом старший бит выделяется под знак числа: 0 - плюс, 1 - минус.

Самое большое (по модулю) целое число со знаком, которое может поместиться в 2-байтовом формате, это число 01111111111111111, то есть при помощи подобного кодирования можно представить числа от –3276810 до 3276710.

Обратите внимание!

Если число вышло за указанные границы, произойдет переполнение! Поэтому при работе с большими целыми числами под них выделяется больше места, например 4 байта.

Формат с плавающей точкой используется для представления в компьютере действительных чисел (англ. real). Числа с плавающей точкой размещаются, как правило, в 4 или 8 байтах.

Нормализованная форма представления чисел с плавающей точкой обеспечивает огромный диапазон их записи и является основной в современных ЭВМ.

Представление целого положительного числа в компьютере Рассмотрим кодирование прямым кодом: Для представления целого числа в компьютере используется следующее правило:

- ✓ число переводится в двоичную систему; результат дополняется нулями слева в пределах выбранного формата;
- ✓ для обозначения знака числа при любой длине ячейки памяти выделяется самый левый (самый старший) бит. Запомните: для положительных чисел знаковый бит равен 0, а для отрицательных чисел знаковый бит равен 1.

Например, при 8 битовой (однобайтовой) ячейке памяти число +**118**₁₀ будет записано в двоичном коде так:

0	1	1	1	0	1	1	0
---	---	---	---	---	---	---	---

А число -118 $_{10}$ будет отличаться лишь первым "знаковым" битом, который на этот раз будет равен 1

1 1	1 1 0	1 1	0
-----	-------	-----	---

Запомните способ кодирования целых чисел со знаком, когда код положительного отличается от кода своего отрицательного эквивалента только знаковым битом (0 или 1) называется **прямым кодом**.

Недостатки прямого кода:

- 1. Наличие +0 и -0. В прямом коде десятичному числу 0 соответствуют 2 кода: 00000000 и 10000000. Это неизбежно приводит к "ступору" любого электрического сумматора.
- 2. Операция суммирования числа со своим отрицательным эквивалентом не приводит к получению нуля. Например, просуммируем числа +5 и -5:

0	0	0	0	0	1	0	1
1	0	0	0	0	1	0	1
1	0	0	0	1	0	1	0

$10001010_2 = -10_{10}$

Как видите в результате суммирования получили -1010. Это является абсолютно недопустимым для технических устройств.

Обратный код для целых чисел со знаком

В обратном коде для обозначения знака также выделяется старший бит, но отрицательный эквивалент числа формируется по-другому. Для образования обратного кода отрицательного числа нужно изменить "знаковый" бит на 1 и инвертировать все биты числа (0 заменить 1, и наоборот)

Рассмотрим числа +5 и -5:

 $+5:=0\ 0000101_2$

 $-5:=11111010_2$

Что мы имеем в результате суммирования +5 и -5?

0	0	0	0	0	1	0	1
1	1	1	1	1	0	1	0
1	1	1	1	1	1	1	1

Все единицы кода - это отрицательный ноль, т.к. он образовался из положительного нуля путем инвертирования всех битов

Вывод по обратному коду: Устранен один из недостатков прямого кода - при суммировании положительного и эквивалентного отрицательного числа получается ноль,

Но недостаток, связанный с наличием двух нулей не устранен: в обратном коде имеются два нуля: 00000000_2 и 11111111_2 . Следовательно, эта система представления не подходит для технических устройств.

Дополнительный код целых чисел со знаком

В дополнительном коде отрицательный эквивалент положительного числа образуется в два приема:

- 1. У положительного двоичного числа инвертируются биты (т.е. получаем обратный код числа)
 - 2. К получившемуся числу прибавляется 1.

Посмотрим теперь на двоичные коды чисел +5 и -5 в дополнительном коде:

+5: 0 00001012

Получим дополнительный код числа -5:

- 1. Получаем обратный код от положительного числа +5 (переворачиваем биты): 1 1111010
 - 2. К младшему разряду получившегося двоичного числа прибавляем 1 Получим дополнительный код:

1	1	1	1	1	0	1	0
0	0	0	0	0	0	0	1
1	1	1	1	1	0	1	1

Т.е. число -5 в дополнительном коде имеет код: 1 11110112.

Проверим получится ли ноль при суммировании +5 и -5?

1 1							~
0	0	0	0	0	1	0	1
1	1	1	1	1	0	1	1
0	0	0	0	0	0	0	0

Прекрасно!!! Наконец-то мы получили заветный ноль! Теперь мы знаем, что дополнительный код должен подойти для компьютерной техники.

Например, представим число **–135**₁₀ в 2-байтовом формате:

 $-135_{10} = 10000111$ (перевод десятичного числа без знака в двоичный код);

-000000010000111 (дополнение двоичного числа нулями слева в пределах двухбайтового формата) ;-0000000010000111 =1111111111111000 (перевод в обратный код);

-11111111101111000 — 11111111111111001 (перевод в дополнительный код).

Отрицательные десятичные числа при вводе в машину автоматически преобразуются в обратный или дополнительный двоичный код и в таком виде хранятся, перемещаются и участвуют в операциях. При выводе таких чисел из машины происходит обратное преобразование в отрицательные десятичные числа. Дополнительный код позволяет заменить арифметическую операцию вычитания операцией сложения, что существенно упрощает работу процессора и увеличивает его быстродействие, позволяет упростить конструкцию арифметико-логического устройства компьютера путем

Задания для закрепления материала:

Записать внутреннее представление следующих десятичных чисел, используя 8 – разрядную ячейку: 64_{10} - 120_{10} Прямой код Обратный код Дополнительный код

Как запишутся в оперативной памяти компьютера следующие десятичные числа в 16-ти разрядной сетке 57_{10} 200_{10} -117_{10} Прямой код Обратный код Дополнительный код

Представление вещественного (действительного) числа в компьютере

Любое вещественное число может быть представлено в экспоненциальном виде, например:

1600000010=0,16.108

 $-0,000015610 = -0,156 \cdot 10 - 4$

В этом формате вещественное число (R) представляется в виде произведения мантиссы (m) и основания системы счисления (P) в целой степени (n), называемой порядком.

Представим это в общем виде, как: $R=m \cdot P^n$.

Порядок n указывает, на какое количество позиций и в каком направлении должна сместиться в мантиссе точка (запятая), отделяющая дробную часть от

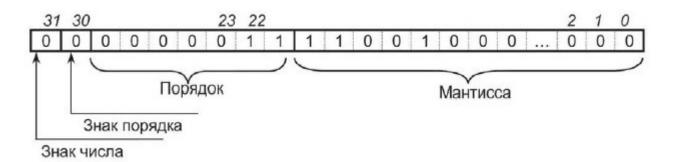
целой. Мантисса, как правило, нормализуется, то есть представляется в виде правильной дроби 0 < m < 1.

Мантисса должна быть правильной дробью, у которой первая цифра после точки (запятой в обычной записи) отлична от нуля. Если это требование выполнено, то число называется нормализованным.

При представлении в компьютере действительного числа с плавающей точкой тоже используется нормализованная мантисса и целый порядок. И мантисса и порядок представляются в двоичном виде, как это было описано выше.

Для размещения вещественного числа обычно используется 2 или 4 байта.

В 2-байтовом формате представления вещественного числа первый байт и три разряда второго байта выделяются для размещения мантиссы, в остальных разрядах второго байта размещаются порядок числа, знаки числа и порядка.


	1-	й байт	0-й байт						
Знак числа	Знак порядка	Поря	ядок		Ma	нтисса			

В 4-байтовом формате представления вещественного числа первые три байта выделяются для размещения мантиссы, в четвертом байте размещаются порядок числа, знаки числа и порядка.

	3	-й ба	айт			2-й байт						1-й байт							0-й байт									
Знак числа	Знак порядка		Пор	ядо	к											M	ан	тис	cca									

Чем больше разрядов отводится под запись мантиссы, тем выше точность представления числа.

Пример записи числа $6,25_{10}$ = $110,01_2$ = $0,11001\cdot2^{11}$, представленного в нормализованном виде, в четырёхбайтовом формате с семью разрядами для записи порядка.

Задание 1. Запишите числа в беззнаковом коде (формат 1 байт):

a) 31; б) 163; в) 65; г) 128.

Задание 2. Найдите десятичные представления чисел, записанных в беззнаковом коде: a) 0 1011000; б) 1 0011011; в) 0 1101001; г) 1 1000000.

Задание 3. Записать число в прямом, обратном и дополнительном кодах (формат 1 байт): а) 11010; б) -11101; в) -101001; г) -1001110.

Задание 4. Запишите числа в прямом коде (формат 1 байт):

а) 31; б) -63; в) 65; г) -122.

Задание 5. Запишите числа в обратном и дополнительном кодах (формат 1 байт):

а) 9; б) -15; в) -127; г) -120.

Задание 6. Найдите десятичные представления чисел, записанных в дополнительном коде:

а) 1 1111000; б) 1 0011011; в) 1 1101001; г) 1 0000000.

Задание 7. Найдите десятичные представления чисел, записанных в обратном коде:

a) 1 1101000; б) 1 00111111; в) 1 01010111; г) 1 0000000.

Вопросы учащимся:

Назовите алгоритмы перевода чисел в обратный и дополнительный коды:

Обратный код.

Записать двоичный код абсолютной величины числа.

Инвертировать все цифры двоичного кода абсолютной величины числа (модуля числа), включая разряд знака: нули заменяются единицами, а единицы — нулями.

Дополнительный код отрицательного числа.

Модуль числа записать в прямом коде в п двоичных разрядах. (Для этого получить внутреннее представление положительного числа N: перевести число N в двоичную систему счисления, полученный результат дополнить слева незначащими нулями до k разрядов)

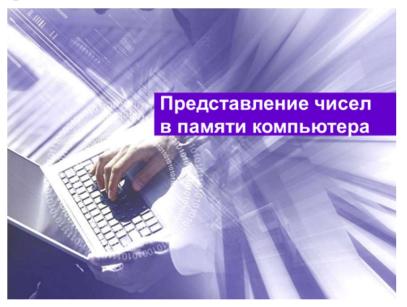
Получить обратный код числа, для этого значения всех битов инвертировать (все единицы заменить на нули и все нули заменить на единицы).

К полученному обратному коду прибавить единицу.

В чем вы видите достоинства представления чисел в формате с фиксированной запятой?

Ответ: простота и наглядность представления чисел, простота алгоритмов реализации арифметических операций.

Рассмотрите пример записи дополнительного кода отрицательного числа -2002 для 16 разрядного компьютерного представления


Домашняя работа

Задание 1. Получить внутреннее представление целого числа 123_{10} в 8-разрядной ячейке памяти компьютера.

Задание 2. Получить внутреннее представление целого числа - 123_{10} в 8-разрядной ячейке памяти компьютера.

Задание 3. Получить внутреннее представление целого числа - 17_{10} в 16 — ти разрядной ячейке памяти компьютера.

Слайды презентации

- 1. Что такое система счисления?
- 2. Какие бывают системы счисления?
- 3. Что называют основанием системы счисления?
- В каком виде находятся в памяти компьютера числовые значения?
- Что нужно сделать чтобы увидеть двоичный код десятичного числа?
- Расскажите алгоритм перевода числа из десятичной системы счисления в двоичную.
- Для каких систем счисления справедлив этот алгоритм?
- 8. Какая система счисления называется позиционной?
- Приведите пример непозиционной системы счисления.

Расположите в порядке возрастания числа

- 1. 11002
- 2. F₁₆
- 3. 45₁₀
- 4. 110₁₂
- 5. 25₁₀
- 6. 1B₁₆
- 7. 21₈
- 8. 348

Ответ: 11002, 11012, F16, 218, 2510, 1B16, 348, 4510

Выполните вычисления в двоичной системе счисления:

110111,12-101111,12+11101012 =11111012

Выполните вычисления в восьмеричной системе счисления:

45678+71348-17758 =11726₈

Выполните вычисления и запишите результат в десятичной системе счисления:

1001011,11₂+152,7₈ - 4D₁₆ =259,5₁₀

Восстановите неизвестные цифры в примере на сложение в восьмеричной системе, которые обозначены знаком вопроса:

3542 2157 5721

Числовые величины

Целые

(формат с фиксированной запятой)

Вещественные

(формат с плавающей запятой)

Целые числа без знака

Пример. Представить число 72₁₀ в двоичном виде в восьмибитовом представлении в формате целого без знака.

Решение.

Целые числа со знаком

Для хранения **целых чисел со знаком** отводится две ячейки памяти (16 битов).

Старший разряд числа определяет его знак. Если он равен 0, число положительное, если 1, то отрицательное.

 $72_{10} = 1001000_2$ 0 1 0 0 1 0 0 0

- $72_{10} = -11001000_2$ 1 1 0 0 1 0 0 0

Такое представление чисел в компьютере называется прямым кодом.

Целые числа со знаком

Для n-разрядного представления со знаком (с учетом выделения одного разряда на знак):

- •минимальное отрицательное число равно 2ⁿ⁻¹
- •максимальное положительное число равно $2^{n-1}-1$,

Целые числа со знаком

Для представления отрицательных целых чисел используется дополнительный код.

Алгоритм получения дополнительного кода отрицательного числа:

- 1. Число записать прямым кодом в п двоичных разрядах.
- Получить обратный код числа, для этого значения всех битов инвертировать, кроме старшего разряда.
- 3. К полученному обратному коду прибавить единицу.

Представить число -2014_{10} в двоичном виде в шестнадцатибитном представлении в формате целого со знаком.

Прямой код	-2014 ₁₀	10000111 110111102
Обратный код	Инвертирование	11111000 001000012
	Прибавление единицы	11111000 001000012
		00000000 000000012
Дополнительный код		11111000 001000102

Целые числа со знаком

Алгебраическое сложение двоичных чисел

- 1. Положительные слагаемые представить в прямом коде.
- 2. Отрицательные слагаемые в дополнительном.
- Найти сумму кодов, включая знаковые разряды, которые при этом рассматриваются как старшие разряды. При переносе из знакового разряда единицу переноса отбрасывают.
- В результате получают алгебраическую сумму в прямом коде, если эта сумма положительная, и в дополнительном, если сумма отрицательная.

Целые числа со знаком

Пример 1. Найти разность 13₁₀ – 12₁₀ в восьмибитном представлении.

	13 ₁₀	- 12 ₁₀
Прямой код	00001101	10001100
Обратный код	-	11110011
Дополнительный код	-	11110100

+ 0 0001101 Так как произошел перенос из знакового разряда, первую единицу отбрасываем, и в результате получаем 00000001.

Целые числа со знаком

Пример 2. Найти разность $8_{10} - 13_{10}$ в восьмибитном представлении.

	8 ₁₀	- 13 ₁₀
Прямой код	00001000	10001101
Обратный код	-	11110010
Дополнительный код	-	11110011

+ 0 0001000 1 1110011 1 1111011

Целые числа со знаком

Пример 2. Найти разность 8₁₀ – 13₁₀ в восьмибитном представлении.

+ 0 0001000 1 1110011 1 1111011

В знаковом разряде стоит 1, значит результат получен в дополнительном коде. Прейдем от дополнительного кода к обратному, вычтя единицу:

1 1110011 0 0000001 1 1111010

Прейдем от обратного кода к прямому, инвертируя все цифры, за исключением знакового (старшего) разряда: $10000101_2 = 5_{10}$.

Вещественные числа

Вещественные числа хранятся и обрабатываются в компьютере в формате *с плавающей запятой*, использующем экспоненциальную форму записи чисел.

$$A = M \times q^n$$

М - мантисса числа (правильная отличная от нуля дробь),

q - основание системы счисления,

n – порядок числа.

Диапазон ограничен максимальными значениями М и n.

Вещественные числа

Например, $123,45 = 0,12345 \cdot 10^3$

Порядок указывает, на какое количество позиций и в каком направлении должна сместиться десятичная запятая в мантиссе.

Число в формате с плавающей запятой может занимать в памяти 4 байта (обычная точность) или 8 байтов (двойная точность).

При записи числа выделяются разряды для хранения знака мантиссы, знака порядка, порядка и мантиссы.

Мантисса **М** и порядок **n** определяют диапазон изменения чисел и их точность.

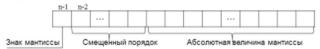
Вещественные числа

Старший байт (третий) в 4-х байтном формате включает

один бит (старший) - знак числа;

один бит - знак порядка;

шесть битов - порядок числа.


три байта (нулевой, первый и второй) хранят мантиссу числа

Третий байт	Второй байт	Первый байт	Нулевой байт
 порядок знак порядка ак мантиссы		мантисса	

В таком представлении максимальный порядок числа равен 111111 $_2$ = 63 $_{10}$. Следовательно, 10 63 - максимальное число, которое можно закодировать таким образом.

Вещественные числа

Положительные и отрицательные значения порядка существенно усложняют обработку вещественных чисел. Поэтому во многих современных компьютерах используют не прямое значение порядка, а смещенное. Запись вещественного числа имеет структуру следующего вида:

Здесь порядок n-разрядного нормализованного числа задается в смещенной форме. Связь между смещенным порядком S и математическим P в данном случае выражается формулой:

 $S = P + 64_{10} = P + 100 0000_2$.

Вещественные числа

Пример 3. Записать внутреннее представление числа 250,1875 в форме с плавающей точкой в 4-х байтовом машинном слове.

Решение:

1. Переведем число в двоичную систему счисления с 24 значащими цифрами (3 байта под мантиссу):

 $250.1875_{10} = 11111010,001100000000000000_2.$

- 2. Запишем в форме нормализованного двоичного числа с плавающей точкой: $0,1111101000110000000000000010^{1000}_2$. Здесь мантисса, основание системы счисления ($2_{10}=10_2$) и порядок ($8_{10}=1000_2$) записаны в двоичной системе.
- 3. Вычислим смещенный порядок: $S_2 = 1000 + 1000000 = 1001000$.
- Запишем представление числа в 4-байтовой ячейке памяти с учетом знака числа:

0100100011111101000110000000000000

Домашнее задание

- Задание 1. Получить внутреннее представление целого числа 123₁₀ в 8-разрядной ячейке памяти компьютера.
- Задание 2. Получить внутреннее представление целого числа - 123₁₀ в 8-разрядной ячейке памяти компьютера.
- Задание 3. Получить внутреннее представление целого числа - 17₁₀ в 16 – ти разрядной ячейке памяти компьютера.

Список рекомендуемых источников

- 1 Новожилов, О. П. Информатика : учебник для СПО / О. П. Новожилов. 3-е изд., перераб. и доп. М. : Издательство Юрайт, 2021. 620 с. (Профессиональное образование).
- *Гаврилов, М. В.* Информатика и информационные технологии : учебник для СПО / М. В. Гаврилов, В. А. Климов. 4-е изд., перераб. и доп. М. : Издательство Юрайт, 2021. 383 с. (Профессиональное образование).
- *Зимин, В. П.* Информатика. Лабораторный практикум в 2 ч. Часть 1 : учебное пособие для СПО / В. П. Зимин. М. : Издательство Юрайт, 2021. 110 с. (Профессиональное образование).
- *Зимин, В. П.* Информатика. Лабораторный практикум в 2 ч. Часть 2 : учебное пособие для СПО / В. П. Зимин. М. : Издательство Юрайт, 2021. 145 с. (Профессиональное образование).
- 5 Информационные технологии: Сети и телекоммуникации : учебник и практикум для академического бакалавриата / К. Е. Самуйлов [и др.]; под ред. К. Е. Самуйлова, И. А. Шалимова, Д. С. Кулябова. М.: Издательство Юрайт, 2017. 363 с. (Бакалавр. Академический курс).
- *Сидорова*, А. А. Электронное правительство : учебник и практикум для бакалавриата и магистратуры / А. А. Сидорова. М. : Издательство Юрайт, 2017. 165 с. (Бакалавр и магистр. Академический курс).
- *Черпаков, И. В.* Основы программирования : учебник и практикум для СПО / И. В. Черпаков. М. : Издательство Юрайт, 2017. 219 с. (Профессиональное образование).
- *Черпаков, И. В.* Теоретические основы информатики : учебник и практикум для академического бакалавриата / И. В. Черпаков. М. : Издательство Юрайт, 2017. 353 с. (Бакалавр. Академический курс).